Magnetic properties of the itinerant ferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaCrGe</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> under pressure studied by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>La</mml:mi><mml:mprescripts /><mml:none /><mml:mn>139</mml:mn></mml:mmultiscripts></mml:math> NMR

نویسندگان

چکیده

$^{139}$La nuclear magnetic resonance (NMR) measurements under pressure ($p = 0-2.64$ GPa) have been carried out to investigate the static and dynamic properties of itinerant ferromagnet LaCrGe$_3$. $^{139}$La-NMR spectra for all measured pressures in ferromagnetically ordered state show a large shift due internal field induction $|$$B_{\rm int}$$|$ $\sim$ 4 T at La site produced by Cr moments. The change $B_{\rm int}$ less than 5\% with $p$ up 2.64~GPa indicates that 3$d$ moments are robust pressure. temperature dependence NMR suggest ferromagnetic order develops below 50~K higher 7.2 T. Based on analysis data using self-consistent-renormalization (SCR) theory, spin fluctuations paramagnetic well above $T_{\rm C}$ revealed be three dimensional throughout region.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

ac susceptibility studies of the weak itinerant ferromagnet SrRuO3 under high pressure to 34 GPa

The dependence of the Curie temperature TCurie on nearly hydrostatic pressure has been determined to 17.2 GPa for the weak itinerant ferromagnet SrRuO3 in both polycrystalline and single-crystalline forms. TCurie is found to decrease under pressure from 162 to 42.7 K at 17.2 GPa in nearly linear fashion at the rate dTCurie /dP −6.8 K/GPa. No superconductivity was found above 4 K in the pressure...

متن کامل

Studies on the weak itinerant ferromagnet SrRuO 3 under high pressure to 34 GPa

The dependence of the Curie temperature T Curie on nearly hydrostatic pressure has been determined to 17 GPa for the weak itinerant ferromagnetic SrRuO 3 in both polycrystalline and single-crystalline form. T Curie is found to decrease under pressure from 162 K to 42.7 K at 17.2 GPa in nearly linear fashion at the rate dT Curie /dP ≃ −6.8 K/GPa. No superconductivity was found above 4 K in the p...

متن کامل

Magnetic properties of (BEDT-TTF)(ClMeTCNQ) studied by ESR under pressure: a neutral-ionic crossover and thermoinduced mesophase.

The neutral-ionic (NI) phase transition in (BEDT-TTF)(ClMeTCNQ) is studied with ESR under pressure to tune the transition temperature. Broad peak structures observed in the spin susceptibility around T(NI) are analyzed with the assumption of a spin-Peierls gap of 1100 K, which demonstrates the continuous evolution of ionic domain fraction through T(NI) over the extent T(W) proportional, variant...

متن کامل

Electronic and magnetic properties of the graphene–ferromagnet interface

This paper presents our work on the investigation of the surface structure and the electronic and magnetic properties of the graphene layer on the lattice-matched surface of a ferromagnetic material, Ni(111). Scanning tunneling microscopy imaging shows that perfectly ordered epitaxial graphene layers can be prepared by elevated temperature decomposition of hydrocarbons, with domains larger than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.103.174426